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Present ed at 17t h IEEE Conference on Deci si on and ‘Cont rol
San Di ego, Californi a, January 1979. Copyri ght by IEEE

MINI MUM—VARIANCE STATP~ ESTIMATION FOR UNIFORM CAUSAL FUNCTIONAL EQUATIONS

H. 0. Washbj rn J. H. Mcndel
Hughes A t r c r t f t  Company - Department of Electrical Engine ering -

Culver City, CaLifornia 90230 University of Southern California
Los Angeles, Califor nia 90007

Abstract travel time by use of interfaces with zero ref lec—
tion coefficients) . We shall develop a minimum—

Recently, a new class of time—domain state variance state estimator for uniform causal func—
space models has been developed (Ref. 11 and 12) tional equations.
to describe layered media systems. When layers
are uni form, the resulting state equations are Our unifori~ causal functional state spacereferred in as uniform causal functional equa— model, denoted j  in the sequel, is described by
tions. In this paper we develop the minimum— the following state and observation equations:
variance state estimator for such equations. We
are led to a natural form of parallel data pro— x(t+T) — A x( t ) + a .(t) + v( t) (1)
ceasing for practical implementation of our
estimator.

~~(t) — H x( t) + n(t) (2)

InJ, xcR”, rnt RT isa known input , wck” is a ran-
i. Introduction dom disturbance, y R 5, ncR5 is random aeagurement

noise. ArR~~’, g~j h5t, and HeRsen . For I ,  the
During the past few years there has been following initial interval information is assumed

great interest in modeiing layered media systems known:
(Ref,. 1—12 , for example) in such diverse areas
as reflection seismology, transmission lines, x(a) where c Ce1 and ,/ — (0,t) (3)

—— speech processing, optical thin coatings and
Di problems. Traditionally, the models have been In Eqs. (1) and (3), r I. the uniform time de’ay .
transfer function models; however, recently Nahi An example which illustrates the genesis of Eqs.
and Hendel (Ref. 11) and Nendel, CC al. (Ref. 12) Cl) and (2) for seismic waves in layered media is
have shown that such systems can be modeled in given in Reference 11.
the tine—domain by wh at appears to be a new class
of stale equations, causal functional equations. Some discussion is in order regarding noise
These equations arise in a natural way when model— processes w(t) and n(t). For differential systems
ing loasless layered media which are described by we usually assume that w(t) and n(t) are white
the wave equation and boundary conditions, through noise processes, in which case ETv(t) v ’(~)) —

the use of ray theory. Q 6(t—~) and E( n( t) n ’ (f) } - R 6(t—C). For such
systems, the correlation value must contribute

Causal functional equations are , in general, finite values in infinitesima l intervals. In order
linear contInuous-time equations with multiple to have nonzero measure , the correlation value must
tine delays (due Lo layers of different travel be infinite over the infinitesimal interval. This
ti mes) . They do nut contain inteErnis or den — problem does not arise for causal functiona l equa—
vatives; hence, they are not inte~rat or differen— tions. In fact, we would not want w(t), for ax—
tial equations; nor are they finite—difference ample, to be a white noise process; for, then x(t)
equatians. As is the case with delay—time systems, would also be white noise , which doe. not make
they require initial value information over sense.
initial intervals of time. Because of their pure
delay—na t ure , their impulse response is compr ised We shall show, in Theorem 1 below, that causal
of an infinlt ~ sequ~nce otT non—uniformly spaced functional equations have solutions that are quite
inpulac fun~ti~ns ec-.’ ‘tendel , et al. (Ref. 12) similar to the solutions of finite—difference
for s;’t’ci(ie dctal~~ into th.’ nature of causal equations. Our second-order noise statistics
fu nctiur. al equ:,ti onj. should therefore be closer to those of . a discrete—

time system. tRecall thar if w(k) and n(k) are
In t his paper we di rect our attention at the discrete—tine white noise sequences , t hen E(w(i)

special , but very ii’poriant and usoft,l, case cf w’(j)} — Q’Sjj  and E(~(i) ~‘(J))  — wher e
uniform causal functiona l equations, in which all is the Eronecker delta function, which is equal to
t ire delays are cqual. This occurs when all unity for i—J and is equal to zero for i#j .~layers hav, equal travel tim~e (lay crs of unequal 
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2 - 1
In our work we assume that w (t)  and n(t) arc a discrete—time formulation. If , for example, we

mutually uncorrelated Ornstein-Uhlcnbeck processes set t — kt in 4, whore k — 0, 1, 2, ..., end we
(Ref. 16 and 17). According to Parsen (Ref. 18), assume that m (t)  and v(t) are only available at
a stochastic process (X(t), t’O} is said to be an sample points t — 0, ‘r , 2t, ..., then 4 reduces to
Ornstein—Uhlenbcck process with parameters a>O an equivalent discrete—time .system . Usually , how—
and BsO if it is a gaussian process satisfying ever, r is •uch larger than real data sampling
E(x(t)) 0 and E(~(t) x(C) ) — a c~ 8 IC~t~ . Feller rates (in geophysical applications, data is comeon-
(Ret . 19) states that the Ornstein—Uhlenbeck 1y sampled at 1 or 2 macc rates); hence, it would
process is obtained by subjecting the particles - be necessary to insert many saalLlayera, whose
of a Browntan motion to an elastic force. interfacts have zero reflection coefficients, to
Parsen states further that the Ornstein—Uhlen— convert4 into a practical discrete—t ime system .
beck process is a model for Brownian motion That system would be of very large dimension, and
which is somewhat more realistic than a Wiener it is doubtful Chat a Kalman filter for this high—
process , order system would be practical. For example , if

— 20 macc and datats sampled every 1 macc , each
We can achieve the effect of a Eronecker layer (which is described by 2 states, an u~going

delta in the second—order statistics of the and a downgoing state) would be replaced by 20
Ornstein—Uhlenbeck process by letting 8-’.. In Layers that would be described by 2 ~c 20 — 40
this case , E(~ (t) x(C)) — e if t — C and E(~(t) states. A 100 layer system would be described by
x(O } — 0 if t i~ 1. More succinctly, for an 4,000 states. By our approach, that same 100 layer
Ornstein—Uhlenbeck process tx (t), t>0} for which system would be described by 200 states .
I’., E(~ (t )  x ( O}  — e 6ts~ 

We shall assume that S

v(t) and n(t) are vector Ornstein—Lihlenbeck Section 2 presents some im~iortant preliminary
processes, each of whose components has the pre- results pertaining to the solution of Eq. (1) and
ceding property; i.e., we assume that v(t) and the statistics of x(t) and x(c) . A mtnimum—~~niance
!(t) are gaussian processes, for which state estimator is derived in Section 3 first for

the case when B — 0 and then for the more general
E(w(t)} — 0 and E(n(t)} — 0 V tc~. ~ (0,.) (4) case when B # 0. Discussions on an implementation

£(v( t) w’(O) — Qd~~ v t , ~~~~ 
- for our state estimator are given in Section 4.

E(u( t) n’(C)) — R6t~ 
V t , ~cj (6)

and 2. Preliminary Results

£(v( t) ~‘(~) )  — 0 V t, (€9 (7) In this section we present results pertaining

To complete the description of 4 we must to the solution of Eq. (1) and the statistics of

specify the statistics of our initial interval ~~(t) and ~(t). Throughout this section and the

information in (3). We shall assune that x(c) 
rest of the paper we use the fact that tcQ can be

(ac,~) is also an Ornstein—Uhlenbeck process for 
uniquely characterized by the mapping

which 8-’—, and that !(a) is uncorrelated with w(t) t — ~~
‘ + Mt where t’cJ and N is an integer (11)

and !(t); i.e., we assume that x(o)  (oc~1 
) is

gaussian, and We depict this mapping in Figure 1.

— 0 V oc~,1 (8) Theorem 1. The solution to the uniform causal

!(x( t ) t’(()) — A8~~ ~ ~ , - (9) functional equation5

!(t+t) — A x( t) + w (t) ; 5(0 ) 0th (12)
and —

isE(z(t) !‘U) )  — 0 and E (x( t) !‘(C)~ 
— 0

V tc ,1 and 
- (10) ~jt’ + (k+1)t3 — Ak$l !(t ’) + I Ak~~ v(t’+it)

i-o
In many lsyered—.edia systems (e.g., a lay— (13)

ered earth syst em) x (o) — 0, V oc j  . For thos.
systems A • 0 and the two conditions in Eq. (10) where t ’ee~ , k — 0, 1, 2, ..., and t • t ’ + (k+l)t.
are sati sfied because x (c)  — 0, V oc,~ . For the
sake of generality, vs present our results below Observe that (13) explicitly shows how the
for arbitrary 5(0), ac’s’ . For the sake of state at any time t - t ’ + (k+l)r depends on an
simplicity, all our results are given for time— initial condition x(t’) and the input w. It is 

_______ jInvariant and stationary systems. It is straight— of interest to note that x (t) depends only on a _______

stationary systems (i.e., for the case when
A — A(t), B — 8 ( t) ,  H — 8(t), Q — Q(t), I — 1(t), ~

• and A — A(t)3 . *Our preliminary results are given in this section 0
for the B — 0 case . Their extensions to the _______

As we have a lr eady men tioned , system4 is a I ~ 0 case are not needed for our Section 3
continuous— tim . system tha t is closely related to results. —

forward to state them for time-varying and non— single element of the initial values ,i(o) (ocj ) 
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namely x(t ’), and a finite number of point values E(x(t1)x ’(t2) )  — E(z(t ’-+BIr)x ’(t ”+Jr) J
of w. This shows that the solution to the uniform
causal_functional state~~~~ a~~~ n~~~ ithough con— N—i 8— 1—iIi ~~ous—time in nature, derives its vnlues m a  — E{tA

Mx(t~) + ~ A w(t’+it)j
discrete-time fashion for a gjven ftxud T~d’~~f i—0 

—

______ 
0(~~~~se, there are an uncountable num— J—l

her of points inj ; hence, we can i~ -ILine_~~(t ~ (A~x(t”) + ~ ~~~~~ v(t”+jt)J’}
as being generated by an unc ntable num~er of j—0

_ _ _ _ _ _ _ _ _ _  

I

discrete-time systems. 
- 

(20)

Proof of Theorem 1: We use an iterative If t ’ #. t ” ,- then the right—hand side of Eq. (20) 
-

argument to justify the solution of Eq. (12), evaluates to zero, because of Eqs. (3), (9), and
given in Eq. (13). First pick a t ’ci/ . From (10) . We must now ascer tain when t ’ # t ” .

Eq. (12), we see that
We shall show that

x(t ’ + T) — A x( t ’) + v(t ’) (14)
t ’ # t” iff  1t 1—t21 • kt k — 0,1,2,.’.. (21)

Again, from Eq. (12), we see that Our proofs of both the necessity and sufficienc y
x(t’ + 2t) • A x (t’ + t) + w(t ’ + t) (15) of Eq. (21) are by the method of contradiction.

To begin, we sssume~ the truth of t ’ # t ” sad assume

Substitute Eq. (14) into Eq. (15) to show that also that t1 — t 2 — Pt , where P — .. .,—2 ,—l ,0,l,2,
From Eqs. (19a) and (l9b), this means that S

+ Zr) — A2x(t’) + Aw(t ’) + w(t ’ + t)(16)
— t” + (M — J)-t — Pt (22)

Iterating Eq. (12) in this same manner k+1 times,
we obtain the solution form in Eq. (13). or that

Corollary 1. Both x(t) and !(t) , tc~~ , are t’ — t ” • (P — N + J)’t (23)
zero mean gaussian process.

Now t ’ , t”c~J • (0,’r); hence,

Proof: By assumption, x(o) (ash) and w(t)
(tcRY’~~ gaussian processes. Equation (135’ —t < t ’ — t” < (24)

demonstrates that 5(t) (tc Q,) can be decomposed
into a linear combInation of these processes; Consequently, since P, M, and .1 are all integers,

hence, since linear combinations of gaussian pro— the only way Eq. (23) can be true is if P—M+J — 0,
cesses are also gaussian (Ref. 13), x(t) is gaus— i12 which case t ’ — r”; but , this contradicts the

sian v tsR . Since x(o) (ac.J ) and ;(~) (ts~~ ) assumption that t ’ # t’. We conclude, therefore,
are by assumption zero mean, it follows, from that if t ’ ~ t ” , then t1 — t2 # Pt , P — . . .
Eq. (13) that x(t) (tc ~ 

) is also zero mean. 0,1,2,.. ., which can also be stated as 1t 1—t21 #
kr , k — 0,1,2 

Because the proof of the results for ~ (t) is
so similar to that just given for x(t), we leave Next, we assume the truth of 1t 1—t 21 ~ kt ,
it to the reader. , k — 0,1,2,..., and assume also that t ’ — t”. From

Eqs. (l9a) and (19b) , this means that
Next , we present some important cross-covari—

ance results. t1 
— t

2 — (N — .flr ; (2 5)

Theorem 2. Let t 1 and t 2 be points in but , this contradicts our assumption that 1t 1—t 21 #
Then kr. We conclude , therefore , that if It i—t 21 # ki,

then t ’ ~ t ” . This completes the proof of Thoerem
E{x(t1) x ’(t2)} — 0 (17) 2.

Corollary 2. Let t1 and t 2 be poin ts in~~
Then

It 1 — t
2~ ii kr k • 0,1,2,... (18)

— 0 (26)

This theorem states that 5(t) is uncorrelated
at nonintcger multiples of the uniform delay time and

t .

- 

E(~(t 2)x ’(t1))  — 0 , (2 7)

Proof: Time points t1 and t 2 can be express-
ed by”~~~~s of Eq. (11) as 

if

— t ’ + Mt t ’c’J and N an integer (19a ) It1 — t2 1 ~* kr k — 0,1,2,... (28) S

— t ” + it t ”ee~ and J an integer (19b) Proof : From Eq. (2), we see that

Pros. Eqs. (19a), (I~b) and (13) , we find that

— —  ‘S - . - S — ~~ —- --5-- —-- 5- -—- -- - - 5 -
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Z(1(t1)Z
’(t

2
)) — HE(x( t1)x ’(t2))H ’ Since t ’ p~ t”, we conclude, from Eq. (21),

that
+ E(n(t

1)n
’(t )) + 1IE(x(t1)n ’(t ) )

It — t21 p1 kt k — 0,1,... (37)
+ E(n( t

1
)x ’(t2))H ’ (29)

which means that time points in Yc(t ’) satisfy Eq. - -L

The first ter, in this expression is zero via (28); hence, from Eq. (27), we see that
Theorem 2. Observe that Eq. (28) implies that

p1 t2 ; hence, the last three terms in Eq. (29) -E{1ft2
)x ’( t))  — 0 for —V 1( e2) e-T

~
(t ’) (38)

are zero via Eqs. (16) , (13) ~nd (10) . The proof -- - -

of Eq. (27) follows in a similar manner. Since x(t) and ~,(t) are gaussian (Corollary 1),
the fact in Eq. (38) , that 1(t2) and x( c) are un-

In Section 3, where we derive the minimum— correlated for V ~ (t 2) t Yc(t ’) also means that
variance estimator For x(t) , we assume that mea— 1(t2) and x ( t)  are statistIcally independent (Ref.
surements , z(t), are available from time sero 13) for V ~ (t 2) c Yc(t ’).
up to and including time t . We now introduce
three data sets. Let 7(t) be the set of mea— Next , pick a typical element , 1(t 1), from
•urement data which are ava ilable up to and includ- Y8(t ’); i.e.,ing time t; i.e.,

c ‘f8(t ’) (39)
7(t) — (y(A) :  0 ’  A ‘ t , tc~~ 1 (30)

By construction of Y8(t’), we know that
Let Y8(t’) be a finite set of measurements associa-
ted with point t ’c..2 and integral multiples of t — t ’ + Jr J — 0,1,2,...,N (40)
from t ’; i.e.,

S Since t ’ p1 t ”, we know that t and t 2 satisfy Eq.
T8(t

’) • (Z(t’+JT), j — 0,1,2,... ,Pf) (31) (28) ; hence, it follows from ~q. (26) that

For j — 0, Y8(t ’) only contains the single measure— E(1(t1)1’(t 2)} • 0 V ~ (t~ ) £ Tc(t ’)
.ent 1(t ’). For j  — N, Y8(t’) contains 8+1
measurements made at the points labeled t ’. t ’+t , and ~ (t 1) £ Y8(t

’) (41). . . ,t ’+Mt in Figure 1. Finally, let Yc(t ’) be the
set difference between 7(t) and 78(t ’); i.e., From Corollary 1, this once again means that z(t1)

and y~(t 2) are -statistically independent for
— 1(t) — Y8(t ’) (32) V 2(t~ £ YC(t’) and 1(t1) £ 18(t’); or , tha t

Yc(t’) and 18(t ’) are statistically independent .
Observe from Eqs. (30) , (31), and (32) that This completes the proof of Theorem 3.

1(r) — Y8(t’) I.) 
~c~

t ’
~ 

(33)
3. Minimum-Variance State Estimator

and
To begin, we present tI)e minimum—variance

Tc(t’) 
(‘TI Y8(t

’) • (34) state estimator for system ,i with 80. The case
of a known forcing function in the state equation

where • is the null set. is treated below in Theorem 5.

Theorem_3. Let t be a point in ~~. such that Theorem 4. For system J, wit h B’O , the
the representation in Eq. (Il) is valid. Then minimum—variance estimator of x (t) .  where t —

Y8(t ’) is statistica lly independent of Y~ (t ’) and + Nt, t ’€ .j  and 11 an integer , is
z(t) is statistically independent of 1c~

t ’~~- x( t) — E(x(t)IY8(t’))  (42)
Proof: We represent t as in Eq. (11) and

choose a typical element , 1(t 2), from data set This theorem States the interesting result
1c(t ’~ 

i.e., that the optimal estimator of x (t) need not be
condit ioned on the entire data set , 7(t ).  The

S 1(t 2) C Yc(t ’) (35) optimal estimator of x(t )  need only be conditioned
on data set Y8(t’), a data set which contains only

By construction of Tc (t ’) we know that a finite number of points~

— t ” + Jr j — 0,1,.. .,M (36) Proof: From estimation theory (lets. 14 and
15, for example) , it is well known that the minimum

and t”cJ . We observe that t” p1 t ’; for , if variance estimator of x (t ) is
— t” than t 2 — t ’ + Jr (J — O,l,...,M)L and S

these time points are associated with T8(t ’). i(t) — E(x(t)IY(t)} (43)
From our preceding discussions , we know that
18(t ’) and Y~

(t ’) share no com.on tius points; which can also be written, using Eq. (33), as
hence, ~~

“ p1 t ’ .
iCt) — E (x(t)118(t ’), ~‘c(t ’~ (44)

_ _ _ _  - — _ _ _ _ _ _ _ _ _
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Next, we use the fact (proven in Meditch (Ret . We observe, from Corollary 3, that for each
14), pg. 101) that if a, b. and c are gaussian fixed t ’s j ,  the optimal est imate of the state
random vectors and b and c are stat istically at t ’ + Mt (N • 1,2,...) ii obtained by iterating
independent , then the famil iar Kalman f i l ter equa t ions on t, usimg t ’

as the initial starting t ime . Since t here are an
E(.Jb,s) • E(aj b) + E(aIc) — Eta ) (45) uncountable number of points in,~ , this results

in an uncountable number of estimators which have
Since z(t), 18(t’) and Y~(t’) are gaussian and to be implemented in order to obtain z(t) for any

- - - Ypp(t ’) and Tc(t ’) are statistically independent tt ~~ .. ...Wa discuss a practical implementation of -

(Theorem 3), we can expand the right—hand side these regultq in Section IV.C.
of Eq. (44) by means of Eq. (45), to obtain

Next, we shall extend our Theorem 4 and Col—
x (t ) — E(x(t)IY8(t’)} + E(x (t) IY~(t ’)) lary 3 results to the case where there is a known

forcing f ucntion in the state equation , that is,
— E(x(t)) (46) to the case when Bp10 in

Additionally, since x( t ) and Y~(t’) are sta t is ti— Theorem 5. Let ~(t) denote the minimum—wan —
cally independent (Theorem 3), E(x(t) I’fc (t ’)) • ance estimator of x(t) for 4in Eqs. (1) and (2).
!(x(t) ); thus, Eq. (46) reduces to Eq. (42). Let ~~ (t) denote the minimum—variance estimator of

x(t) under the assumption that B—0 in Eq. (1).
Corollary 3. For any fixed t ’s~.2 , i ( t )  • Additionally, j1(t) is associated with the follow—

i(t’+ttt) can be compu ted by the discrete—tine ing modified measurement equa t ion:
kalman filtering equations with t ’ considered as
the initial starting time . Hence , for t ’c.,~ , z1

(t) — 1(t) — K j (t) (52)
compute i(t ’+Mt) from the following equations :

where 1(t)c~~’~ satisfies the uniform causal fumc—
i(t’4Ptt) — A~Jt ’ + (M..1)rJ + K(t’+*lt)(1(t’+Nt) tional equation

— HA~ (t ’ + (M—l)rj} (~~) 1(t+t) — A j(t) + B .(t) (53)

P(t’iMiIt ’ + (M— l)r3 — for which

Aflt’ + (M—l)tlt ’ + (M—l)rJA ’ + Q (48)* &(
~
) — 0 V o ~~ . (54)

E(t ’+Mt) — P(t’+Ptrlt ’+(M..l)tJ Then,

K’(KP (t ’+Ntjt ’+(M—l )r JH’ + R } 1 (49)* i(t) • i1(t) + j(t) . (55)

and The proof of this theorem is given in App endix
A. The essence of the theorem is that i (t) can be

P(t’+MtIt ’4$It) — (I—K (t’+Mr)K) computed using Theorem 4 or Corollary 3ior the
modified measurement y1(t ) which can be constructed

PIt ’+Mrlt ’+(M—l)tI (50) a priori from 1(t) and 1(t) . Signal 1(t) can be
precomputed since !(t) is know n a priori. The

where N — 1,2,..., and, ~ (t ’) — E(x( t ’)} and solution of Eqs . (53) and (54) is given by Eq. (13)
P(t’It ’) — E(x(t’)~ ’(t’)T — A. where !(t ’) — 0 and w is replaced by Ne. We then

obtain t he desired estimate of ic(t), ~rt ), by the
Proof: Equation (42) states that x(t) is simple linear transformation in Eq. (55).

obtained from a finite point measurement data set.
It can be expressed by means of Eqs . (11) and 01) Theorem S provides the forma l results for
as ~(t). We do not recoumend calculating ~(t) by

Theorem 5; for the calculations involve solving
!(t) — E(x(t ’+MT) IZ(t ’),Z(t ’+r),. ..,Z(t’+Nt)) (51) an auxiliary causal functional equation . A more

practical way for computing ~(t) is given in theThe right—hand side of Eq. (51) is analogous to following:
the optimal filtered estimate for a discrete—time
sys tem with sampling rate equa l to t sec and m i —  Corollary 4. Let i(t) dengte the minimum— S

t ial time equa l to t ’ . Our notation in Eq. (47) variance estimator of xTt) for~4 in Eqs. (1) and
for i(t ’+Nt) Is equivalent , therefore, to the (2). For any fixed t ’c4 , ~(t) — i(t’+Itt) cam SS 
notation i(t ’+MTIt ’+M,). Equations (47) through be computed from the following:

• (SO) are tt.~ .Ilscrcte—time K.ilman filter equations
(Ref .  14 , far example) obtained by replacing dis— ~(t ’+Mr) — Aitt ’+(M—l)t ) + Dm( t’+(N—l)rj
Crete variable Ii in those equations by t ’ + Mr .
——____________ + K(t ’4Mr)( 1( t ’4Mt) — KAift ’+(N—l)rI
•For nonstationary no ise process, Q becomes Qit ’
+ (N — 1 ) r J  and 1 becomes R(t ’ + Nt). — KNe(t ’+(N— l)tJ) , (56) •

where Ptt ’+NtIt ’+(H—l)rJ, K(t ’4$ft), and

_ _ _  
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P(t’4*ftlt’4$tr) are given by Eqs. (48) , (49) , and B. Digital Computer Simulation of Uniform Causal
(50) , respectively , and N — 1,2 Addition— Functional Equation
ally, i(t ’) — E(x( t’)) and P(t’IL ’) — E(x(t ’)S 
!‘(t’)T — A. We assume here that r is an integral multiple

of sample rate T; i.e., we assume that
Proof: For t t ’4*t , we can express i(t ~ +

Kr) by means of Eqs. (35), (53) and (47), as LT (60)

- !(t’iNT) — i1(t ’+*tr) +1(t’4f4T) - The •pproximatioji denotes a temporaLquantization. - -
which may be needed to associate a value of L with -

— A~1(t ’+(M— l)rJ + K(t’+Mt)(11(t’4*c) r. For r = LT,.~ -t- ,~1~~, where

— HA~1Lt ’+ (M—l )t ) )  + A 1(t ’+(M— l)rJ — (t ’: t ’ — iT, £ — O,l,..., L—l ) (61)

+ I t t’+(M—l)r~ (57) Set has a countable number of elements. It
does not include t—r , since set.~2 does not includewhere, Fr om Eqs. (32) and (33), that point.

y1(t
’+Nt) — Z(t ’+Ift ) — H j(t’+Mr) We direct our attention at Eq. (13) which is

the solution to uniform causal functional equation
— Z(t’4*r) — KA 1(t ’+(M— l )r )  (2 1). Observe from Eqs. (60) and (61) that

— HB (t ’+041)tJ (56) t ’ + p r  — ( t  + Lp)T . (62)

Substitute Eq. (58) into Eq. (57), making use of Letting
Eq. (5 5), to show that .

~~(p) ~, x( (t  + Lp)TJ (63)
i(t’41h) — Ai(t’+(N—l)rJ + Brn(t ’+(M—l)tJ

and
+ K(t ’+ftt)(1(t’+Mr) - HAi(t ’+(N-l)rJ

Yt(P) A w((t + Lp)TJ , (64)
— HB.(t’+(M—l)rJ} (39)

We see that (13) can be written as
which is our desired result , Eq. (56) . Observe k 

k—ithat gain matrix K(t ’44tr) f’ Eq. (59) is the same x
t(k+l) — A ~~(0) + A w

~
(i) (65)

gain matrix as in Eq. (47) ; hence, ft is computed
from Eq. (49), and P(t’+Nt I t ’+(M—l)tJ and where £ — 0,l,...,L—1. This equation is the well—
P(t’s’itrlt ’+itt) are computed from Eqs. (48) and known solution to the following finite—difference
(50) , respectively , equation (Ref. 20 , for example) :

We see that a known forcing function in a ~~(k+l) — A xt(k) + w
~

(k) (66)
umiform cr usal functional state equation is handled
in the estimator equation in exactly the same where £ — 0,l,...,L—1 and k — 0,l,2,.. .,k* . We
manner that such a function is handled for a conclude, therefore, that the sampled solution to
finite-difference equation. It does not affect our uniform causal functional equation can be
th. error covaniance equations , generated as depicted in Figure 2.

To begin, we must fix our useful data length
4. Computation at an integer multiple of r , say Nt. In terms of

our sampling rate, T, our useful data length is
A. Introduction ML? sec.

In Section 2, we demonstrated that the solu— On a discrete tine—scale the Ornstein—Uhlen—
tion, ! ( t) ,  of causal functional equation (1) beck process, with B-i—, reduces to a discrete—time
can be generated by an uncountable number of white noise sequence (w(JT), J — O,l,...,J*} where
discrete-tire systems. In Section 3 we demonstra— E(w(jT) w’(iT)} — Q6i4’ In order to cover the
ted that i(t) (tc 

~~~.) can be generated by moans of useful da ta length, w* choose
an uncountable number of discrete-time kalman
filter s . When we simulate our results on a digi— — ML (67)
1.1 computer , computat ions are mad e every T sec.
at discret e t i~w points. Consequently, on a we create sequences ~~(k) , w 1(k) , ... ,

digital computer , x(t)’ is generated by a count— which are needed to simulate Eq. (66) by sorting
able ntmber .1 discrete—t ime systems , and i(t) is and distributing (w(JT), J — 0,t,...,NL) accord ing
generated by a countable number of discrete—time to the distribution algorithm given on Figure 2.
kalman filters. We explore the detailed ramifica-
tions of these observations below . Index k ranges from zero to k*. To determine

we observe tha t the very last value of v ( ( t  +
Lk)T] used by the distribution algorithm

L 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _ _ _
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(set £ — 1.—I and It — k~) is w{((k*+l)L_lJT). We refer to Eqs. (‘5) — (80) as the 1th Italman
Since ..~ is an open interval on its right—hand end, filter, K! .
the argument of this function must equal NL—l;
hence, We obtain ~(jT~ JT) (~j_l ,2,...,J* — NL—l) by

means of the parallel data processmn& algorithm
— N.4 (68) depicted in Figure 3.

Out L noise sequences , ~~(k) , ~~(k) , ..., The Kalman filters do not generate estimates
drive L systems, each given by Eq. (66) , over .the initial time interval 4c-; for ,_over that

which operate in parallel. Solving our_uniform interval .j1(QIO) is given a priori . The first
causal_£uncttonaj,~~iation on adigi tal computer measurement used by KF0 is 1(LT) , whereas the last
has led to a parallel data processing algorithm, measurement used by KFL_ l ~~ LI(NL—l)Tj ; hence , we

must have the sequence {~ (JT) , j— L,L+l,...,NL—l}
As a final step we generate (x(JT), j  — 0, available at the start of the simulation. Kalman

1,. ..,NL—l} by multiplexing ~~(k), !j(k), ..., filter outputs ~~(MIM),~~(MIH),...,~i.,,,1(MIN) are
!I ._l(k) using the multiplexor algorithm also multiplexed to give the desired estimates
given on Figure 2. It is straightforward to

S show tha t (~ (jTJj T ),j— L,L+1,...,NL—l) — (
~~(lIl),i1(lIl),

(x(JT) , J—O ,l,...,NL—l) — {
~~
(O),

~ l
(0)....,

~~_l
(O), ...,

~~.,,i
(lIl),

~~
(2I2),ii(2t2),...,&,,,i(2I2),

~~(l),x1(l) ~~_l(l),...,~~ (k*),!l(k*) , ...,j~(N—l I N—l),i1(N—l IN—l), ‘

... ,!~,l (k*)} (69) . .. ,~~~,1(N—l lN—1) ) (81)

Also, given k and t , j  • £+Lk. For a time—varying system J, we must make
the following substitutions in Eqs. (75)—(78) : S

C. Digital Computer Simulation of Minimum- Ai (M) ÷ A, Ht(M) + H, Qt(M—l) — Q, and RtOi) •
Variance Estimator where, for example,

We now direct out attention at the simulation A (H) A,A ((t + LM)TJ (82)
of Eqs. (47)—(50). As in Section B. we assume £

that time is discretized so that Eqs . (60) and In this case, each of the L Kalman filters has no
(61) are true. Letting comuon calculations , and the computational burden

can be quite heavy .
it(HIM) âi((t + LM)T J (70) 5

If , on the other hand , system 4 is time-in-
~~~~ ~,k((t + LM)TJ (71) vatiant or slowly time—varying (i.e., all matrices

are piecewise constant over i sec intervals), then
P
~
(MIM_l) A P[(t + LH)Tj(L + LM — L)T1 (72) Eqs. (76), (77), and (78) are not functions of £ 5

(remember that L is used to define ~~~ and ~~~
P1Q(~N) ~, P[(t + LH)TI(t + LM)TJ (73) is less than r units in length) . Hence, in these

cases we need only calculate P(MIM—l), K(M) , and
-—4 p(MIM) for H — 1,2 N—l once . These cslcula— S -

tions are then used by all L Kalman filters, which
Y&(N) A y((L + LH)TJ , (74) greatly reduces the computational butden.

we rewrite Eqs. (47)-(50) as: A flowchar,~ for implementing the L Kalmanfilters, when ~4 is t ime—invariant or slowly time—

~~
(MIM) — Ai1(H—1IH—1) + K

~
(H) [

~
,
~
(N) vary ing, is depicted in Figure 4. Because the

outer loop varies M and the inner loop varies t ,
— KAi~ (M— lf M—l) J (75) outputs P(HIM) and ~~(M~M) are generated in multi-

plexed ordering. This can be verified by listing
P
~
Di?M_l) — AP

t(
M.1IM_l)A’ + Q (76) the sequence of outputs from this flowchart and

comparing then with the right—hand side of Eq. (81)
— P

1
Oi1N_l)H ’ tHP

~~
(M1M_l)H’ + RI (77) to see that they are identical.

and

P1 (K!Pfl — LI — K
1

(M)HJ P
1

(NIM— l )  (78) 5. Con~luaiona

where f~’r e.~ch ( ( 0 ,l,...,L— l), N - 1,2,..., In this paper we have derived the minimum—
- N—I , and , variance state estimator for uniform causal func— 5

- tionni equations. These equations are useful for
!t(0I0) — E(x ,(O) ) (79) modeling layered media systems which are described :

by the lossless wave equation and boundary condi—
P1(OIO) — Ft . (80) tions. Causal functional equations, though con-

tinuous—time in nature, bear a strong resemblance

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~t t~~~ — A -----.~,— ~~~~__ _ . _. -.~~ -
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to discret—time equations. In fact , we have where
shown that the solution , x(t), of uniform causal
functional equation (1) can be generated by an un— z,(o) A x(o) V oc’i (A—2)
countable number of discrete—time systems . We
have also shown that for any fixed t ’e4 — [0,t), Add Eqs. (A—l) and (53), and (A-2) and (54), to
i(t), where t — t ’ + Mt (H • 1,2,...), is given show that
by the usual discrete—time Kalman filter equations
with t ’ ~onatdered the initial. starting~ t ime. Of x1(t+t) + ~(t+r) A(x1(t) +j,(t)I + Ba(t)
course, to obtain i(t) for all tc we would need 

- - — -

an uncountable number of discrete—time Kalnan + w(t) (A—3) -

filters; but , imposing a mesh ont2 leads to a
countable number of Kalman filters which operate and
in parallel , as depicted in Figure 3. To the
best knowledge of the authors, this is the first x1(a) + &~°~ 

— x(o) V ac~/ (A—4)
eitimation theory rusult that has led to a natural
form of parallel data processing. Comparing Eq~.. (A—3) and (1), and (A—4) and (3),

we conclude by uniqueness, that
The results of this paper are not merely an

end unto themselves. An important problem for x(t) — x1(t) + &(t) (A- 5)
layered media systems is to extract reflection
coefficients from noisy measurements. This if Next, we define the modified measurement vec—
often referred to as an inverse problem (Refs. 3, tor 1~~t) in Eq. (52) . That zj (t.) can be express—
4, 7, 8 and 10), and usually, solutions are given ed solely in terms of ~~(t) is apparent , when Eqs.
only for noise—free measurements. The reflection (2) and (A—5) are substituted into Eq. (52); i.e.,
coefficients appear is matrix A. Sy means of the

~esuita of this paper , two appraoches can be z1
( t )  — 11x1(t) + n(t) (A—6)

studied for solving the inverse problem. In the
first approach, we augment state equations (one Observe that Eqs. (A—I) and (A—6) are now of
for each unknown parameter) to Eq. (1) and develop the right form to use Theorem 4 to obtain x1(t) —

an extended minimum—variance estimator for the Ef~j(t)I Y1(t)), where T1(t) — (~~(A): 0 1 < t,
resulting augmented system. Of course, the tc~~ ).

augmented state equations must also be causal
functional in nature or else, if they were dif— From estimation theory, we know that
ferential equations, our augmented system would
be heriditary in nature and a different course ~(t) — E(x(t)IY(t)} (A—i)
of action would have to be taken. In the second
approach, we estimate the reflection coefficients Applying (A—7) to (A—5), we find that
by a maximua—likeiihood technique. To accomplish
this, we must first develop the correct likelihood ~(t) — E (x1(t)IY(t)} + j(t) (A—8)
function for a uniform causal functional equation.
Both of these approaches are presently under since g(t) is deterministic. We must now prove
investigation, that

E(x1(t)JY(t)} 
— E {x 1(t)1Y 1( t ) }  — i(t) (A—9)

Acknowledgment in which case Eq. (A—8) reduces to the desired
result in Eq. (55).
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From Eq. (52), we see that it~y can be expressed
in terms of y1(t) , as

Appendix A. Proof of Theorem S - •4y — (w: ~1(t,w) + H&(t) ~ 
a) acR ; (A—12)

Let ~~ (t) be associated with system , hence ,
when 8—0; that is to say, x1(t) satisf ies 4 — (w: ~1(t ,w) a — }11(t)) asK (A—13) S

x1(t+s) — Ax 1(t) + w(t) (A—i)
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